Mahgoub, A., Yi, E., Shankar, K., Elnikety, S., Chaterji, S., and Bagchi, S. (2022). Orion and the Three Rights: Sizing, Bundling, and Prewarming for Serverless DAGs. OSDI 2022.

Paper Poster Slides Recording

Accepted to OSDI 2022



Students
Ashraf Mahgoub, Edgardo Barsallo Yi , Karthick Shankar

Abstract
Serverless applications represented as DAGs have been growing in popularity. For many of these applications, it would be useful to estimate the end-to-end (E2E) latency and to allocate resources to individual functions so as to meet probabilistic guarantees for the E2E latency. This goal has not been met till now due to three fundamental challenges. The first is the high variability and correlation in the execution time of individual functions, the second is the skew in execution times of the parallel invocations, and the third is the incidence of cold starts. In this paper, we introduce ORION to achieve these goals. We first analyze traces from a production FaaS infrastructure to identify three characteristics of serverless DAGs. We use these to motivate and design three features. The first is a performance model that accounts for runtime variabilities and dependencies among functions in a DAG. The second is a method for co-locating multiple parallel invocations within a single VM thus mitigating content-based skew among these invocations. The third is a method for pre-warming VMs for subsequent functions in a DAG with the right look-ahead time. We integrate these three innovations and evaluate ORION on AWS Lambda with three serverless DAG applications. Our evaluation shows that compared to three competing approaches, ORION achieves up to 90% lower P95 latency without increasing $ cost, or up to 53% lower $ cost without increasing tail latency.