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ABSTRACT 

We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. 
Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a 
representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN 
using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform 
same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art 
methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, 
relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also 
scales better for a larger number of enhancer predictions. Moreover, our H1  IMR90 predictions turn out to be 
more accurate than IMR90  IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model 
is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep 
learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the 
foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive 
experimentation.   
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INTRODUCTION 

Cell types are unique, in spite of the fact that they contain the same genomic DNA, largely because of their 
differential gene expression patterns. This in turn is a function of the regulatory genomic regions⎯specialized cis-
regulatory modules (CRMs), such as, enhancers 1, silencers, promoters, and insulators 2-4. Among these, genomic 
enhancers constitute a prominent class of CRMs, often located far from the gene promoters that are responsible 
for mediating gene transcription 5. Enhancers can be defined as short DNA sequences regulating temporal and cell-
type specific basal gene-transcription levels, from transcription start sites (TSSs), at distances ranging from 
hundreds of bases to, in rare cases, even megabases 6-8. Knowing their properties, regulatory activity, and genomic 
targets is crucial to the functional understanding of cellular events, ranging from cellular homeostasis to 
differentiation. Recent genome-wide investigation of epigenomic marks has indicated that enhancer elements could 
be enriched for certain epigenomic marks, such as complex, albeit predictive, combinatorial histone modifications. 
Our efforts in this paper are motivated by these recent advances in epigenomic profiling methods, which have 
uncovered enhancer-associated chromatin features in different cell types and organisms 9-12. Specifically, in this 
paper, we use recent state-of-the-art deep learning methods and develop a deep neural network (DNN)-based 
architecture 13-15 to predict the presence and types of enhancers in the human genome, “learning” from the 
combinatorial histone modification codes. We call our system “EP-DNN”, an acronym for “Enhancer Prediction using 
Deep Neural Network”.  

Computational identification of enhancers has proven challenging due to several reasons 16. First, the search space 
of genomic enhancers is large. Second, while enhancers regulate genes in cis, they do not display distinct locational 
or orientation-centric signals relative to the genes that they regulate 17. This is because enhancers can function at 
a distance from their target genes via chromatin looping that bring the enhancers and target genes in three-
dimensional proximity 18, 19. Alternately, enhancers can function via direct eRNA transcription from the enhancer 
DNA sequences 20.  

Several high-throughput experimental approaches exist to identify enhancers 21, 22. The first is mapping specific 
transcription factor (TF) binding sites (TFBS) through ChIP-seq 22. This stems from the fact that short enhancer 
DNA sequences serve as binding sites for TFs, and the combined regulatory cues of all bound TFs determine 
ultimate enhancer activity 23, 24. However, this approach requires the knowledge of the TF combinations that are 
expressed and occupy binding sites in a specific physiologic setting 25. Therefore, predicting enhancer activity from 
sequence-based information, such as from the TF motif content, remains challenging 24, 26. The second is based on 
mapping transcriptional co-activator binding sites (e.g., histone acetyltransferase HAT, p300) 27, 28. However, not all 
enhancers are marked by a set of co-activators. The third approach relies on identifying DNase-I hypersensitivity 
(DHS) sites 8. However, DHS sites lack specificity because DNase-I can map to other CRMs as well, as evident 
from our ground truth diagram. Finally, the fourth approach involves histone modification patterns produced by 
ChIP-seq that consistently mark enhancer regions 29-33, and which thus is our method of choice in this paper.  

Related Work 

Several computational methods that use histone modification signatures to identify enhancer regions have been 
developed. Won et al. proposed the use of Hidden Markov Models (HMMs) to predict enhancers using three primary 
histone modifications 30. Firpi et al. focused on the importance of recognizing the histone modification signals 
through data transformation and employed Time-Delayed Neural Networks (TDNNs) using a set of histone marks 
selected through simulated annealing 31. Fernández et al. used Support Vector Machines (SVMs) on an optimized 
set of histone modifications found through Genetic Algorithms 32. RFECS (Random Forest based Enhancer 
identification from Chromatin States) improved upon the limited number of training samples in previous approaches 
using Random Forests (RFs), in order to determine the optimal set of histone modifications to predict enhancers 33. 
We provide a comparison of some of the recent methods of enhancer prediction in Table 1, comparing the following 
enhancer prediction protocols: RFECS 34, DEEP-ENCODE 35, ChromaGenSVM 32, CSI-ANN 31, and HMM 30.  

In addition to histone modifications, recent work has also used other input features to classify regulatory sites in 
DNA. For example, 36 is a complementary line of work in which the authors further classify enhancers as strong or 
weak enhancers. For their input features, they use k-mers of DNA nucleotides, while we use histone modification 
patterns. The results are not directly comparable to ours because their ultimate classification task is also different. 
Further, looking at a finer level of detail, their classification ignores whether an enhancer is poised or active, and 
considers the simpler, two-way classification of strong or weak enhancers. Another recent paper shows how to input 
biological sequences into machine learning algorithms 37. The difficulty arises from the fact that ML algorithms need 
vectors as inputs and a straightforward conversion of the biological sequence into a vector will lose important 
information, such as ordering effect of the basic elements (38 C for DNA, amino acids for protein). Prior work 
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developed the idea of generating pseudo components from the sequences that can be fed into the ML algorithm. 
The above-mentioned paper unifies the different approaches for generating pseudo components from DNA 
sequences, RNA sequences, and protein sequences. This is a powerful and general-purpose method. In our work, 
however, we do not need this generality. We feed the (24 different) histone modification markers and, by binning, 
we consider features corresponding to adjacent genomic regions for each marker (20 for each histone modification 
marker). We shift the window gradually thus capturing the overlapping regions among contiguous windows and the 
DNN extracts the relevant ordering information, thanks to such overlap. Further in repDNA 39, the authors consider 
DNA sequences alone. RepDNA calculates a total of 15 features that can be fed into ML algorithms. The 15 features 
fall into 3 categories⎯nucleic acid composition, autocorrelation features describing the level of correlation between 
two oligonucleotides along a DNA sequence in terms of their specific physicochemical properties, and pseudo 
nucleotide composition features. 

EP-DNN’s Contributions 

In this paper, we solve the classification problem of whether a histone combinatorial code represents an enhancer 
element, or not, using our deep learning-based classifier, EP-DNN. Our main contributions in this paper are as 
follows: 

• We have developed an efficient DNN-based classifier to identify enhancers in two distinct cell types, namely 
the human embryonic stem cell type (H1) and a differentiated primary lung fibroblast cell line (IMR90). We 
demonstrate that DNNs work well in extracting features in a high-dimensional space (a set of eighty features 
coming from four histone modifications), and then, in predicting enhancers. A DNN has a large configuration 
space and we take care to avoid overfitting on the training data. Our technique is able to identify multiple 
kinds of enhancers, even when trained on only a single kind (p300).  

• When keeping the number of enhancer predictions by RFECS, DEEP-ENCODE (DEEP-EN), and EP-DNN 
equal for purposes of comparison (roughly at 100,000 predictions), we find that our protocol has superior 
accuracy, specifically, with a validation rate of 91.6%, for same-cell and cross-cell predictions, relative to 
85.3% for DEEP-EN and 85.5% for RFECS. EP-DNN appears to provide a more powerful model, potentially 
capturing the more tightly-packed, albeit richer, data embedded in the embryonic H1 cell type. This is 
because while the H1 dataset appeared to be a more complex dataset to train on, it also achieved higher 
accuracy on same-cell (H1  H1) or cross-cell (H1  IMR90) predictions. Thus, EP-DNN demonstrates 
further improvement in IMR90 prediction results when H1 is used as the training set, with validation rates 
of 95.40% (EP-DNN) compared to 93.00% (RFECS) and 81.42% (DEEP-EN). This finding also hints at the 
global enhancer prediction capabilities of our EP-DNN, i.e., prediction across cell types, potentially reducing 
the need for experimental results on new cell types.  

• EP-DNN has lower computational cost when compared to some of the state-of-the-art enhancer prediction 
methods. At the upper end of the prediction set size, with 40,000 samples: RFECS took 30 seconds, DEEP-
EN took 15 seconds, while EP-DNN took less than 2 seconds. The slope of the running time is also the 
lowest for EP-DNN, which indicates that our method will scale well for larger numbers of predictions. 

MATERIALS AND METHODS 

We present a high level overview of our approach in Figure 1. In the figure, we show, separately, the training phase 
and the prediction phase. In the training phase, we create an optimal DNN using a set of histone modifications and 
the associated spatial features and, in the prediction phase, we use the same set of features to predict if a regulatory 
region is an enhancer or not, followed by validation of our results. We predict enhancers in two distinct human cell 
types⎯embryonic stem cells (H1) and primary lung fibroblasts (IMR90), which were generated as a part of the NIH 
Epigenome Roadmap Project 12. 

To train our DNN, we first select distal p300 co-activator binding sites through ChIP-seq, and then further select the 
regions representing enhancers through overlapping these p300 sites with DHS that are distal to TSS. These serve 
as our positive training examples. For negative training examples, representing non-enhancers, we select TSS that 
overlap with DHS, as well as random 100 bp bins that are distal to known p300 or TSS. The corresponding histone 
modification signatures of our collected sites are then used as input to a DNN. Figure 2 gives a schematic, indicating 
the rationale used to map enhancers and TSS sites in relation to the different true positive markers (TPMs) used in 
our method.  
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Datasets 

The development of EP-DNN is motivated by the availability of data from large scale projects, such as the ENCODE 
project 9, which has annotated 400,000 putative human enhancers, with the current estimate of enhancer numbers 
being over a million 40. Another extensive database is the NIH Roadmap Epigenomics Project 10, 12 that also provides 
publicly-available epigenomics maps, complementary to ENCODE. In addition, the NCBI’s Gene Expression 
Omnibus (GEO) repository 11 also hosts much previous work and data on enhancer prediction. We have used data 
from all three of these repositories for arriving at our training and validation data for EP-DNN. 

p300, and related acetyltransferases, are transcriptional co-activators that bind to TF activation domains and have 
been found to localize to many active enhancers, but not all 29. Further, p300 co-activators are ubiquitous, present 
in all cell types, and control the expression of numerous genes. Therefore, by using p300 enhancer signatures for 
training, we can also find other types of enhancers (e.g., CBP- or TF-based), generalizing well toward prediction of 
multiple classes of enhancers. The number of peak call data used is shown in Table 2. Of these, 5,899 p300 peak 
calls were selected for H1 and 6,000 peak calls from the IMR90 cell line to represent enhancers for the training set. 
This may appear to be a small fraction of the peaks to use as a training set, but we use this as it reflects the choice 
of RFECS and thus, our numbers will be comparable. 

However, p300 co-activators also bind to Transcription Start Sites (TSS) that are not enhancers. Therefore we 
include 9,299 TSS peaks from H1 and 8,000 peaks from IMR90 in our training set as negative examples. Finally, 
31,994 random distal background sites were selected for H1, and 34,000 for IMR90, to represent non-enhancers, 
and these also contribute to the negative examples. Logically, Note the p300 sites that were chosen as the positive 
samples were distal from TSS. 

Histone Modification Inputs, Normalization, Preprocessing 

Previous studies indicate H3K4me1, H3K4me2, H3K4me3, and H3K27ac as the top histone modifications 33 
indicative as markers of active enhancers and therefore we selected them for our EP-DNN model. A notional 
schematic of the enhancer and the TSS (promoter) relative to the various relevant sites⎯DHS, TFBS, and p300 is 
given in Figure 2. The bounding box is the DHS and we are only considering sites that are overlapping with the 
DHS. The peak location is shown for each element and the activity level curve is shown on both sides of the peak 
region. The ChIP-seq reads of these histone modifications were binned into 100 bp intervals and normalized against 
its corresponding inputs by using an RPKM (reads per kilobase per million) measure. We consider a total of 24 
histone modification markers corresponding to all the modifications for which data is available in ENCODE and NIH 
Epigenomics Roadmap Project. For each histone modification, we have 20 features corresponding to 20 windows 
centered around the peak of the modification activity level. Multiple replicates of histone modifications were used to 
minimize batch-related differences, and the RPKM-levels of the replicates were averaged to produce a single RPKM 
measurement per histone modification. The RPKM-levels were further normalized to create a Z-score, based on 
the mean and the standard deviation of the training set. The transform applied is the standard one Z = (X-μ)/σ. The 
same mean and standard deviation from the training set were also used to normalize the test set before prediction. 

Deep Neural Network (DNN) Model 

DNNs have the traditional advantage that they provide feature extraction capabilities and do not require manual 
feature engineering or transformation of the data, which in turn would have required domain knowledge. A fully 
connected DNN with 80 inputs, 1 output, and softplus activation functions for each neuron was used to make 
enhancer predictions using positive and negative examples, as shown in the ground truth diagram (Figure 3A), 
using histone modification combinations as in Figure 3B. The full architecture of the EP-DNN is shown in Figure 
4. Each input sample consists of four 20-dimensional vectors of 100 bp bin RPKM-levels, windowed from -1 to +1 
kb at each bin location. The window is centered at the peak of the different elements (enhancers and non-
enhancers). Thus, there is one vector for each of the four histone modifications that we consider, giving a total of 
80 input features. Training was done in mini batches of 100 samples via stochastic gradient descent. To prevent 
overfitting, dropout training 41 was applied, with a dropout rate of 0.5, along with a weight decay of 0.9.  An optimal 
architecture of three hidden layers, comprising of 600 neurons in the first layer, 500 in the second, and 400 in the 
third, was found through cross-validation on half the training data, selected randomly. In terms of the 
hyperparameters, which include the number of layers and number of neurons in each layer, they were tweaked 
manually through trial and error, for small cross-validation sets. The point was to find a global architecture that 
matches all cell types extending even to ones not yet analyzed or found, and not overfitting to a specific one. 
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The full training set was used to train the model and a convergence on the mean squared error was observed with 
only 5 epochs of training. This extensive training mechanism was found to be suitable to optimize the DNN with its 
fairly large parameter space. 

Training and Prediction 

The DNN was trained with two class values, the selected p300 sites, assigned a value of 1, to represent enhancers, 
and the TSS and random background sites, assigned a value 0, to represent non-enhances. Two DNN models 
were built using the same architecture and training method; one trained by data from H1 and the other from IMR90. 
Note that only the p300 sites, and not the other enhancer types, were used for training as the positive samples. 
This is because p300 sites are found across different cell types and have been found to generalize well.  

Both DNN models were used to make enhancer predictions in H1 and IMR90. Thus, we have four experimental 
setups. 

Within cell type prediction: H1 → H1; IMR90 → IMR90 

Across cell type prediction: H1 → IMR90; IMR90 → H1 

Each 100 bp bin in the genome gets a value, which is the output of the DNN. Various threshold values were then 
applied to the output values to assign each location to an enhancer class, if the value is larger than the applied 
threshold. If not, the location was assigned to a non-enhancer class. By varying the value of the threshold, we get 
different values for false positives and false negatives. For comparison against previous algorithms, the same 
training and testing datasets were applied to RFECS and DEEP-EN for both H1 and IMR90 prediction.  

Measurement of Validation and Invalidity Rates 

The standard precision and recall metrics misrepresent actual prediction performance on real data, since there are 
many more unknown functional sites than just the p300, CBP, NANOG, SOX2, OCT4 binding enhancers, or TSS. 
Ideally, we would have to evaluate performance on all these sites that are unaccounted for. However, most are not 
experimentally verified and are unknown. Thus, there is not enough data to make an accurate evaluation of the 
prediction of any computational model. 

Further, functional enhancers are experimentally verified by single peak locations. However, in reality, enhancers 
exist in various levels (height) and sizes (width) that more or less gradually decrease around the peaks. These 
peaks are not available during prediction on real data because we are trying to predict for locations that have not 
yet been experimentally verified. Therefore, any computational model must be able to predict for the peak as well 
as the surrounding non-peak regions. Further, the evaluation method must synthesize some criterion to determine 
what is the ground truth (is it an enhancer or not) for any genic region away from the peak location. 

Consequently, RFECS introduced the notion of validation, misclassification, and unknown rates, to solve this 
problem. If a prediction is made that a location is an enhancer, RFECS says the prediction is validated, given that 
the location is sufficiently close to either a known peak marker or an open chromatin site (DHS) (2.5 kb to be precise) 
and sufficiently far from a TSS (1 kb to be precise). The second outcome is that a prediction is misclassified if the 
predicted location of an enhancer is too close to a TSS (2.5 kb to be precise). All other cases are considered as 
prediction correctness is unknown, i.e., there is no True Positive Marker or TSS within 2.5 kb of the predicted 
location of the enhancer.  

We adopt the RFECS metrics, but make one improvement on it. The RFECS method singled out TSSs as 
misclassifications, while omitting known insulators, promoters, and other functional non-enhancer sites, and then 
lumping them together as ‘Unknown’. TSSs alone only make up a tiny portion of non-enhancers, which are not truly 
representative of the real overall misclassifications that a prediction algorithm makes. Furthermore, if enhancers 
are a subset of DHS, it is safe to assert that the unknown sites are, at the very least, not enhancers of any kind, 
and should be considered invalid as well. They should not be called “unknown”, from an enhancer prediction 
viewpoint since we “know” they are not enhancers. Rather, they should be labeled as “misclassification”.  

Based on these observations, the RFECS validation method was refined to classify predicted enhancers as either 
“validated” or “invalidated”, using the following criteria. True Positive markers (TPM) refer to distal DHS sites, p300, 
CBP, and TFBS that are greater than 1 kb away from TSS.  

• If a predicted enhancer lies within 2.5 kb of a TPM, then EP-DNN’s prediction is “validated”. In this case, 
we know that this site is either a known or an unknown enhancer, and can be safely assumed to be an 
enhancer since it overlaps with a DHS site. 
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• Otherwise, EP-DNN’s prediction is “invalidated”. This means that it is either a TSS or an Unknown, but we 
know for a fact it is not an enhancer.  

 

Runtime Measurements 

The runtime of DNN, DEEP-EN, and RFECS for training and prediction were measured for 10k, 20k, 30k, and 40k 
samples each. Since actual run times are highly dependent on several factors, such as the level of parallelization, 
hardware, platform, or implementation language, each method’s runtime was measured as the CPU clock time, 
under the same environment implemented in MATLAB2014rb, with no parallelization. We wanted a fair comparison 
of all methods at its most basic algorithmic form, i.e., without giving an algorithm advantage due to a specific 
hardware acceleration. For example, since there are highly efficient computation platforms for training DNNs on 
GPUs (like Theano or TensorFlow), EP-DNN could have benefited from that, but that would have been a fair 
comparison with the other algorithms. Further, we acknowledge that some algorithms are more easily parallelizable 
than others and our method of using serial execution alone does not bring that aspect out. However, we followed 
this approach to take out the variability of different parallelization methods, which would have made it difficult to 
compare the runtime results of the different protocols.  

RESULTS 

Validation Rate and Invalidity Rate Plots 

Figure 5 shows the variation of validation and invalidity rates for the three protocols, when trained on the same 
datasets ⎯ our protocol EP-DNN and the two recent protocols, DEEP-EN and RFECS⎯for the two cell types, H1 
and IMR90, for same-cell prediction as well as for cross-cell prediction. By varying the appropriate threshold 
parameter for each protocol, we are able to get a varying number of enhancer predictions. Table 3 summarizes the 
result, for a fixed number of enhancer predictions, at approximately 100,000 enhancer predictions, which appears 
to be a reasonable number of enhancers based on the ChIP-seq validated data points and falls squarely near the 
middle of the range prior work has mentioned (including DEEP-EN and RFECS). The first and most important 
observation is that EP-DNN performs better for validation and invalidity rates for both cell types, for same-cell and 
cross-cell predictions, across the entire range of number of enhancers being predicted (except for IMR90-IMR90 
validation, where EP-DNN performs better for high number of enhancer predictions, which we explain later). Also 
note that the slope of the curve for EP-DNN is lower than for DEEP-EN and RFECS, implying that even when the 
protocol makes a large number of enhancer predictions, EP-DNN is more accurate. The only exception to the better 
performance of EP-DNN happens for IMR90 same-cell prediction, for high threshold values (i.e., low number of 
predictions) where DEEP-EN and RFECS outperform EP-DNN. This likely happens because DEEP-EN and RFECS 
do a certain amount of overfitting to training data (DEEP-EN more so than RFECS) and such overfitting shows a 
(slightly) better prediction at high threshold values. This use case with high threshold values is arguably useful to 
experimentalists who are particular about high confidence predictions of enhancers for IMR90.  

In addition, from the comparative validation rates for the different models (RFECS, DEEP-EN, EP-DNN), we gather 
the following cell-type and model-specific insights: 

1. Same-cell prediction is easier than cross-cell prediction, as would be intuitive, with one exception. This is for 
the case that training on the H1 cell type and predicting on the IMR90, which turns out to be more accurate than 
IMR90 to IMR90 prediction when we use our EP-DNN model. This is potentially because H1 may be a harder 
cell type for training. Previous studies indicate that embryonic stem cells exhibit a richer set of variations within 
their histone modification signatures, stemming from the fact that they are enriched in transposable elements 
42, 43, which are known to be enriched in active histone modifications, as per the exaptation hypothesis 44. 
Further, it is possible that these signatures for the different classes of embryonic enhancers are more similar to 
each other than in non-embryonic stem cells 45, possibly due to not being fully developed yet and having the 
potential to be developed into a wide variety of differentiated cell types 46. Thus, once H1 is used as a training 
set via a powerful model that can capture the subtleties of the dataset (e.g., larger numbers of histone 
modification combinatorial codes representative of enhancers), it is able to achieve higher validation rates for 
cross-cell predictions. Thus, it indicates that our EP-DNN model is more powerful as a model to learn a classifier 
using a dataset where the positive and negative examples may be more “inter-mixed”, and thus, harder to 
classify. This underlines a fundamental motivation for our use of DNN⎯the increased power of the model, at 
the expense of a greater effort in tuning the algorithm. Further, given that the H1 cell type is an embryonic cell 
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type that is formative in character, it stands to reason that the differences between the signatures of enhancers 
and non-enhancers may be harder to resolve in it. We can contrast this to the adult cell type (lung fibroblasts) 
used in our study, IMR90, where these differences while easier to resolve by a classifier, does not help in 
predicting enhancers in the embryonic cell type. This shows up in the comparatively lower validation rate for 
the IMR90 → H1 experiment. The conclusion from the above scenario can be summed up as follows: first, EP-
DNN is a better learning model; second, the H1 cell type (and possibly by extrapolation any other embryonic 
cell type) presents a harder learning task; third, once this harder learning task is tamed, the insights gained by 
the model result in better accuracy for cross-cell prediction. If accurate cross-cell prediction were indeed 
possible, this would greatly reduce the need for conducting potentially lengthy and expensive experimentation 
on hitherto unseen cell types.  

2. For RFECS, we see that the prediction is approximately equally accurate for same-cell and cross-cell 
predictions, as shown in Figure 5 and Table 3. The absolute values are higher for IMR90 predictions than for 
H1, whether for same-cell or cross-cell prediction, attributed to the reasoning discussed above. This pertains to 
the smaller distance between positive and negative samples in H1. For DEEP-EN, there appears to be 
significant overfitting in that we see that the cross-cell prediction drops significantly for both cell types. This drop 
is greater than 10% toward the higher end of the number of enhancer predictions. However, in keeping with our 
speculation that H1 is a harder-albeit-better training set, we observe that cross-cell prediction numbers for 
IMR90 are higher than for H1, when trained on the other cell type, respectively.  

Validation Rate and Invalidity Rate Summary Table 

We benchmark the validation and invalidity rates for the three techniques, ours namely EP-DNN, DEEP-EN, and 
RFECS, in Table 3. We keep the number of predictions by each technique to be close (approximately 100,000), for 
purposes of comparison. We find that DNN performs better in terms of both validation and invalidity rates. The 
advantage is more pronounced for prediction for the H1 cell type, where it is observed that enhancer prediction is 
a more difficult task than for IMR90. The improvement with DNN can be attributed to the use of the powerful DNN 
modeling technique, including multiple hidden layers and a large number of neurons at each layer, extensive feature 
selection, and optimization of the architecture and the parameters of the DNN. For cross cell prediction, it turns out 
that predicting IMR90 enhancers when the model is trained on H1 is an easier task than the opposite cross-cell 
prediction task, i.e., H1 → IMR90 is better than IMR90 → H1. The reasons for this have been discussed in the 
previous section.   

Validation Rate and Invalidity Rate Detailed Investigation 

We investigate in greater detail the factors that contribute to the validation and invalidity rates and present the 
results in Table 4 and Table 5. We find that the DHS that are distal from the TSS and the ones that are not p300, 
CBP, or TFBS (called DHS-e, “e” for enhancers), are the most numerous enhancers and provides the single largest 
contribution toward the validation rate. For IMR90, TFBS and CBP regions are not present in its dataset. The p300s 
and CBPs are more numerous in the data than the proportion in which they appear in our predictions. This can be 
explained by two factors. First, EP-DNN creates a model that generalizes well and does not overfit to the training 
data (which is all p300 for positive training examples) and consequently has a lower performance in predicting p300 
sites. Second, the enrichment curves for p300s and CBPs are narrower, and thus, the signature may be weak 
toward the edge of the 2.5 kbp boundary from the enhancer peak location. For the invalidity rate, the single biggest 
contribution comes from incorrectly predicting the non-DHS regions as enhancers. Predicting some of the TSS as 
enhancers also contributes to the invalidity rate. The greatest contribution to the validation rate comes, as before, 
from the DHS regions that are not p300 binding sites but are enhancers. The greatest contribution to the invalidity 
rate, again, comes from predicting the non-DHS regions as enhancers. Note that we find that DNN is more prone 
to error in classifying some TSS sites as enhancers, more so than DEEP-EN and RFECS. However, the difference 
in TSS mis-prediction is not too significant between DNN and the others. The latter observation is borne out by the 
fact that the final invalidity rate for DNN is lower.  

Training and Prediction Time 

The training time and, more importantly, the prediction time are two important qualities that determine the usability 
of predictive methods when dealing with large data sizes. We measured these times under a variety of experimental 
conditions⎯different numbers of samples and different numbers of histone modifications, and then tabulated the 
results in Table 6. 
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EP-DNN and RFECS both show reasonably fast training times. However, we can see DEEP-EN is almost unusable 
without using specialized hardware and parallelization techniques to speed up training time (which we have not 
done here) (Figure 6).  

EP-DNN has the fastest prediction time of all the methods, while RFECS has the fastest training time. This is likely 
due to the use by RFECS of vectorized operations during training and creating the decision trees. Although this 
property allowed fast training for RFECS, it no longer applies during prediction since each decision tree node and 
each decision tree within the model has to be traversed one by one for each sample. This results in RFECS having 
the slowest run time when it comes to the prediction. Reflection on the results indicates the benefit in EP-DNN (from 
a runtime aspect) of not using an ensemble model, which keeps its computational cost bounded. We trade off the 
multiple layers of DNNs to handle the complexity in the patterns of the data. It turns out that computationally, this is 
a very worthwhile tradeoff, even with 5 layers (3 hidden layers, one input layer, and one output layer) in our DNN.  

The fit in Figure 6 also reveals that the training time for DEEP-EN increases exponentially with the training set size 
and thus, may be unusable at large training set sizes. For the prediction time, all three protocols show a linear trend, 
but the EP-DNN line has the lowest intercept as well as the lowest slope. Intercept indicates the fixed cost of the 
algorithm while the slope indicates the cost per sample. At the upper end of the range of prediction set size (40,000 
samples), RFECS takes 30 seconds, DEEP-EN takes 15 seconds, while EP-DNN takes less than 2 seconds. The 
lowest slope for EP-DNN also means it will be usable at larger number of predictions.  

DISCUSSION 

In this section, we discuss the other beneficial aspects of using a DNN, which are not captured by the earlier 
quantitative results. 

Relation of EP-DNN to RFECS 

We see from our experimental results that with respect to validation and invalidity rates that EP-DNN is faster and 
has superior performance than RFECS 34. In addition, there is the issue of interpretability of the results of RFECS. 
With RFECS, a random forest is generated from multiple (65 in their final selection) decision trees. A decision tree 
has as an important quality that it is easily interpretable, but unfortunately, the power of a random forest comes at 
the cost of a decrease in the interpretability of the resultant model. Further, the use of the Fischer discriminant 
analysis at each node of RFECS makes it less interpretable. The final output of RFECS is a voting of the features 
as they appear in the constituent decision trees. However, the voting has to take two factors into account – the 
presence or absence of a feature in a specific tree plus where in the tree it appears (an appearance higher in the 
decision tree indicates higher importance). The result of the voting is a scalar value that is finally used to order the 
features, but the scalar value is not easily interpretable.  

Relation of EP-DNN to DEEP-ENCODE (DEEP-EN) 

Another recent work that classifies DNA regions as enhancers or non-enhancers is DEEP-EN 35. DEEP-EN’s key 
contribution is that it runs its classification on two new datasets, namely FANTOM5 and VISTA, which are 
significantly different from the ENCODE dataset. It also suffers from a lack of interpretability of the resulting model. 
DEEP-EN uses an ensemble of 1,000 Support Vector Machines (SVMs) for an intermediate classification result. It 
then uses an Artificial Neural Network (ANN). The inputs to this ANN are confidence scores (confidence scores are 
defined as the proportion of positive votes versus all votes for models from each cell line) obtained in the first layer 
of DEEP-EN from the four cell type-/tissue-specific ensemble models. The resultant model is therefore completely 
unintuitive to a human user and the paper also makes no claim about interpretability.  

Conclusion 

In this paper, we have described the design and development of a deep learning based model, which we call EP-
DNN, for predicting enhancers in epigenomic data using patterns of histone modifications. DNN with softplus units 
trained with dropout was used to predict enhancers in an embryonic cell type (H1) and a differentiated lung fibroblast 
cell type (IMR90). We demonstrated that DNNs work well in extracting features automatically from a set of eighty 
features in four histone modifications, and then, in using these to predict enhancers. We also showed that DNN 
predictions generalize well across different cell types (H1  IMR90 and IMR90  H1), especially when trained on 
the H1 cell type. Our experiments further suggest that embryonic stem cells have more tightly-packed data and can 
thus leverage higher model expressivity, specifically by affording the DNN classifier with the required data to come 
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up with a more accurate decision boundary between the positive and negative examples. EP-DNN provides 
powerful feature extraction capabilities with relatively low computational cost. 

Our work hints at the possibility of accurate prediction across cell types, once a model has been trained on a 
“complex” cell type, such as H1. Global prediction of enhancers will enable the rapid prediction of enhancers in new 
cell types, without the need for a separate training set for every new cell type. Once these putative enhancers in 
different cell types have been identified, it will be important to link them to the specific genic promoters that they 
regulate. This kind of interaction is complex with many-to-many associations, wherein one enhancer can regulate 
the expression of multiple genes, and multiple enhancers can affect the same gene, acting in synergy. Such 
predictions will lower the experimental cost of generating enhancer and gene interaction data through methods 
such as chromatin conformation capture-based protocols 47. 

Currently, the EP-DNN framework relies strongly on p300 binding sites and DHSs for positive training examples 
and is mostly centered around the selection of important histone modifications marking genomic enhancers. In the 
future, we will use data from other co-activator binding sites, potential sequence codes of enhancers 8, 48-50, DNA 
methylation 33, 51, and nucleosome destabilization data, in order to map enhancers more effectively. For negative 
training data, currently we have used random 100 bp bins that are distal to known p300 or TSS. With the emergence 
of more data for other types of chromatin elements, such as silencers, insulators, or extracellular matrix modifiers, 
these can be used, with higher certainty, for negative training. In addition, DNNs are capable of genome-wide 
mapping of these other types of chromatin elements, further annotating the genome-wide regulatory codes. What 
will also help is to integrate diverse types of datasets for the prediction of CRMs, as has been done in the 
EnhancerFinder model 52, which has currently used the relatively small, albeit in-vivo validated, VISTA enhancer 
database 53 for the prediction of developmental enhancers. In addition, linking different types of histone 
combinatorial codes that we have developed in this paper, with RNA-seq datasets that measure gene expression 
levels can potentially help classify enhancer activity levels, rather than the current binary classification.  
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Table 1. Comparison of different recent methods for enhancer prediction: EP-DNN, RFECS, DEEP-EN, 
ChromaGenSVM, CSI-ANN, and HMM. 

 EP-DNN RFECS DEEP-EN ChromaGenSVM CSI-ANN HMM 

Feature 
Selection 

4 histone 
modifications 

3 histone 
modifications

11 histone 
modifications

~5 histone 
modifications 

40+ histone 
modifications

10 histone 
modifications 

Feature 
Extraction 

DNN 
FDA-based 

Random 
Forest 

CSI-ANN 
method 

Genetic 
Algorithm 

FDA 
Simulated 
Annealing 

Hyperparameter 
Optimization 

Cross 
validation 

Manual ROC Manual 
Genetic 

Algorithm 
Manual 

Simulated 
Annealing 

Classification DNN 
FDA-based 

Random 
Forest 

SVM + ANN SVM 
Time 

Delayed 
ANN 

Hidden 
Markov Model 
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Table 2. The number of peak calls of functional elements in the data set used for training and prediction, obtained 
through ChIP-seq and DNase-seq. 

 H1 (100 bp) IMR90 (100 bp) 

DHS 150,729 149,787 

TSS 9,299 8,000 

P300 13,523 52,988 

CBP 12,958 N/A 

TF 71,173 N/A 
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Table 3. Validation rates for the three protocols—our protocol EP-DNN and the two recent algorithms that define 
the state-of-the-art, DEEP-EN and RFECS, where we keep the number of enhancer predictions approximately 

constant, at 100,000. This shows the validation rates for same-cell prediction and cross-cell prediction. Same cell 
prediction rates are higher, except for cross-cell prediction with training on H1, for EP-DNN. 

H1→H1 Threshold # of Predictions Validation Rate (%) Invalidity Rate (%)

DNN 0.52 104,994 90.76 9.24 

DEEP 83 105,030 86.43 13.57 

RFECS 0.86 104,155 78.76 21.24 

H1→IMR90 Threshold # of Predictions Validation Rate (%) Invalidity Rate (%)

DNN 0.64 100,632 95.40 4.60 

DEEP 65 101,127 81.42 18.58 

RFECS 0.92 100,344 93.00 7.00 

IMR90→IMR90 Threshold # of Predictions Validation Rate (%) Invalidity Rate (%)

DNN 0.60 103,196 93.79 6.21 

DEEP 94 103,751 93.28 6.72 

RFECS 0.88 103,624 93.23 6.77 

IMR90→H1 Threshold # of Predictions Validation Rate (%) Invalidity Rate (%)

DNN 0.56 97,178 86.26 13.74 

DEEP 88 97,245 79.99 20.01 

RFECS 0.80 95,174 77.00 23.00 
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Table 4. For prediction in the H1 cell type, a breakdown of the validation rate for the different components that are 
classified as positive: p300, CBP, Transcription Factors (NANOG, OCT4 and SOX2), and other DNase-I 

hypersensitive sites (DHS). A breakdown is also provided of the invalidity rate for the different components that 
are incorrectly classified as enhancers: transcription start sites (TSS) that overlap DNase-I, and random 100 bp 

bins that are distal to known p300 or TSS. 

 Validation Rate (%) Invalidity Rate (%) 

H1→H1 p300 CBP TFBS DHS-e1 TSS Non-DHS 

EP-DNN 0.28 0.25 15.69 74.54 3.56 5.68 

DEEP-EN 0.38 0.26 26.94 58.85 1.11 12.46 

RFECS 0.79 0.81 32.85 44.31 1.60 19.64 

 Validation Rate (%) Invalidity Rate (%) 

IMR90→H1 p300 CBP TFBS DHS-e TSS Non-DHS 

EP-DNN 0.30 0.31 9.55 76.11 8.57 5.16 

DEEP-EN 0.44 0.42 19.11 60.02 1.95 18.06 

RFECS 0.84 0.81 30.90 44.45 1.55 21.45 
 

  

                                                 
1 We define DHS-e to be the DHS sites that are distal from TSS sites and are not p300, CBP, or TFBS.  
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Table 5. For prediction in the IMR90 cell type, a breakdown of the validation rate for the different components that 
are classified as positive: p300 and other DNase-I hypersensitive sites (DHS). A breakdown is also provided of 

the invalidity rate for the different components that are incorrectly classified as enhancers: transcription start sites 
(TSS) that overlap DNase-I, and random 100 bp bins that are distal to known p300 or TSS. 

 Validation Rate (%) Invalidity Rate (%) 

IMR90→IMR90 p300 DHS-e TSS Non-DHS 

EP-DNN 19.41 74.38 2.45 3.76 

DEEP-EN 16.93 76.35 0.69 6.02 

RFECS 14.35 78.88 0.88 5.89 

 Validation Rate (%) Invalidity Rate (%) 

H1→IMR90 p300 DHS-e TSS Non-DHS 

EP-DNN 19.95 75.45 2.03 2.57 

DEEP-EN 15.51 65.92 0.89 17.69 

RFECS 13.97 79.02 0.69 6.31 
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Table 6. The training and prediction time for EP-DNN, RFECS, and DEEP-EN measured in CPU cycles, without 
any parallelization applied. Training and testing were done on set sizes of 10k, 20k, 30k, and 40k. 

DNN 

Sample size Training time [4 mods] (s) Prediction time [4 mods] (s) 

10k 13.488305 0.397887 

20k 27.002257 0.916081 

30k 40.127233 1.367836 

40k 53.499745 1.805095 

RFECS 

 Training time (s) Prediction time (s) 

Sample size 24 mods 3 mods 24 mods 3 mods 

10k 2.486469 1.386131 10.491072 9.770147 

20k 4.651446 2.511087 16.876750 15.316730 

30k 6.729005 3.728762 25.762677 22.412472 

40k 9.241245 5.122801 29.065038 27.796367 

DEEP-EN 

 Training time [11 mods] (s) Prediction time [11 mods] (s) 

Sample size Initialization & ANN Training 1 SVM  100 SVMs 

10k 10.854171 8.507385 3.932895 

20k 8.439214 9.857070 7.159999 

30k 12.011724 10.404023 9.657686 

40k 16.891985 14.569916 14.515174 
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Figure Captions 

Figure 1. Overview of our solution approach in which we train DNNs using the histone modifications and their 
associated features. We perform weight analysis and feature selection to identify the optimal DNN, which is then 
used for predicting if a regulatory region is an enhancer or not. 

Figure 2. A schematic showing the enhancer and the TSS (the promoter) relative to some of the True Positive 
Markers (TPMs) ─ DNase-I hypersensitivity site (DHS), p300 binding site, and transcription factor binding site 
(TFBS) (applicable to the H1 cell line). Various forms of these TPMs overlap with the enhancer and the promoter 
sites. An overlap of the DHS with the TFBS can indicate an enhancer, while an enhancer is typically distal to the 
TSS. TPMs refer to DHS, p300, CBP, and TFBS. 

Figure 4. EP-DNN is a fully connected DNN with an 80-600-500-400-1 architecture and softplus activation 
functions. It takes 4 histone modifications (20 features in each mod, with ten 100 bp bins on each side of a 
location) as input and has a single real valued output which is put through a threshold to determine the 
classification of a potential enhancer location. 

Figure 5. Plots showing the validation and invalidity rates for our algorithm (EP-DNN) and two recent algorithms 
that define the state-of-the-art, DEEP-EN and RFECS. These plots show the performance of these three 
algorithms for same-cell prediction (separately for H1 and IMR90 cell lines) and for cross-cell prediction (across 
these same two cell lines). A and B show the validation rate and invalidity rate of each method for enhancer 
prediction on an H1 cell-type using the same cell-type as a training set. C and D show the rates for cross-
prediction on IMR90 using the same trained methods. E and F show the rates for same-cell prediction on IMR90. 
Finally, G and H show the cross-cell prediction rates for H1 with methods trained on IMR90 data. 

Figure 6. Training and prediction run time for the three protocols, EP-DNN (our protocol), RFECS, and DEEP-EN, 
for different sizes of the sample set. The curve fitting is done through a polynomial curve fit. A shows the training 
time where DEEP-EN takes a substantially longer time that EP-DNN or RFECS and also exhibits quadratic 
growth as the training set size increases, whereas the runtime of EP-DNN and RFECS are linear and the 
difference between the two are almost negligible. B shows the prediction runtime. EP-DNN has the fastest 
prediction time among the three methods. 

 

  

Figure 3. A) The ground truth diagram for the positive and negative examples that EP-DNN uses for H1, with the 
only caveat being that we use data for Sox2, Oct4, and Nanog, among different possible TFs. For IMR90, again,
the ground truth diagram will be similar, just without including the embryonic cell-specific TFs. B) The enrichment 
level of histone modifications H3K4me1/2/3 and H3K27ac around a p300 co-activator binding site. These histone 
modification levels are used as input features. 
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