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Hestia: Performance and Cost Optimization 
for NoSQL Distributed Databases in the Cloud

o NoSQL DBMS have numerous configuration parameters
 Apache Cassandra has 50+ parameters
 Redis has 40+ parameters

o Configuration parameters control the system’s behavior
o Parameter tuning is time-consuming for DBAs
o Optimal configurations are workload dependent
o Dynamic workloads: MG-RAST (Metagenomics portal), 

Tiramisu (Bus-Tracking mobile application).
o Cloud services provide many configurations for the type, 

and size of the VMs, which control the compute capacity, 
RAM, and network bandwidth

o Estimate the performance for given workload on given 
cloud instance type  

o Estimate the performance of the cluster 
(Throughput/Latency) under dynamic workloads

For a NoSQL database, can we find the optimal application 
and cloud configurations that achieves best performance 

under a cost bound?

Motivation

Apache Cassandra

o Application and Cloud configurations space is huge
o Exhaustive searching at runtime is impractical
o Agile approach is needed to adapt to workload shifts
o Many systems can provide performance prediction for a 

single server (Such as Rafiki[1] or Ottertune[2])
o Predicting the overall cluster performance is challenging as 

it also depends on other parameters such as Replication 
Factor (RF) and Consistency Level (CL)

o Prediction models trained on a particular infrastructure 
(e.g. VM type and size) perform very poorly when the 
infrastructure changes 

o Need to transfer knowledge across workloads and across 
infrastructures

o Can we predict the performance of a heterogeneous 
cluster? (i.e., nodes with different application/cloud 
configurations)

o Reconfigurations have a cost:
 Changing application configurations may require 

application restart
 Changing VMs incurs a downtime

Challenges Design Overview
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o Popular NoSQL DB
o Distributed (fault tolerant)
o Horizontally scalable (performance scales with # of 

instances)
o 50+ performance related configuration parameters 
o Interdependent parameters (one-by-one tuning provides 

sub-optimal performance)
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Assume we want to tune the application configurations only:
CPU-Related Parameters

o Concurrent_reads (7 values)
o Concurrent_writes (7 values)
o Concurrent_compactors (7 values)
o Memtable_flush_writers (7 values)

Memory-Related
o Memtable_space (mb) (4 values)
o Row_cache_size (4 values)
o Key_cache_size (4 values)

Disk-Related
o Compaction_throughput (mb/sec) (5 values)
o Memtable_cleanup_threshold (4 values)
o Compaction_Method (2 values)

Amount of data needed
o 7*4 * 4^4 * 5 * 2 * 10 = 6,146,560 data points
o Takes 600 years to collect (for a 5 min benchmark run with 

each setting)

o Automated Impactful Parameters Identification (D-Optimal 
Experimental Design)

o Surrogate models training (Offline)𝑃𝑒𝑟𝑓௦௜௡௚௟௘ ൌ  𝑓௣௥௘ௗሺ𝑊𝐿, 𝐴𝑝𝑝𝐶𝑜𝑛𝑓, 𝐶𝑙𝑜𝑢𝑑𝐶𝑜𝑛𝑓ሻ 𝑃𝑒𝑟𝑓௖௟௨௦௧௘௥ ൌ  𝑓௣௥௘ௗሺ𝑊𝐿, 𝑅𝐹, 𝐶𝐿, 𝑃𝑒𝑟𝑓௦௜௡௚௟௘ଵ, … . , 𝑃𝑒𝑟𝑓௦௜௡௚௟௘ேሻ 
o At runtime, search configurations space for optimal 

configurations for the current workload
o Generate a reconfiguration plan that maximizes predicted 

benefit and minimizes reconfiguration cost
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o Majority of existing tuning tools were created by vendors to only support 
their particular company’s DBMS (Dias et al. 2005 & S. Kumar 2003)

o Other systems require more intervention of DBAs to identify important 
parameters ior guide the searching process (Tran, Dinh Nguyen, et al. 2008)

o Ottertune (Aken-SIGMOD17) and iTuned (Duan-VLDB09): Uses nearest-
neighbor interpolation between previously collected data points. Ottertune 
[2] takes 30-45 min to start suggesting a better configuration, whereas 
iTuned [3] takes 60–120 min

o Rafiki (Mahgoub-Middleware17): Reduces the searching time significantly 
by training the surrogate model offline, which it then queries to find the best 
configurations for a new workload. However, it lacks two fundamental 
features: cluster-level prediction, and the capability of knowledge transfer 
across different architectures

o Cherrypick (Alipourfard-NSDI17): Tunes cloud configurations (VMs types 
and cluster size) for big data analytics. However, only homogenous clusters 
are supported and no cost of reconfiguration is considered

Redis
o Stores data in key, value pairs
o In-memory, no tables, schema, or collections
o 40+ performance related configuration parameters 
o Data has to fit in memory, disk is only used for 

snapshots and fault-tolerance purposes
o If dataset size exceeds what can fit in RAM, Redis either 

stops accepting write request (Default) or starts 
evicting least-recently-used rows 

o Selecting the appropriate VM type and size is very 
important to achieve data consistency and durability
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Cloud Configurations

4 Cassandra servers with RF=1, CL=1
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Cloud Configurations

4 Cassandra servers with RF=4, CL=1
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Cloud Configurations

4 Cassandra servers with RF=2, CL=1

o We vary the number of C4 (Compute Optimized) to R4 (Memory Optimized) 
VMs in a 4-servers Cassandra cluster. We start by 4 C4 VMs and notice that 
with RF=1 and CL=1, the performance of the reads is very poor and stays poor 
till all VMs are reconfigured to R4. 

o Now with RF=2, we notice that the cluster can tolerate having one instance to 
be of type C4 and still achieves good performance for reads. This is because 
now (with RF=2) all data records are accessible through the 3 R4 servers 

o Similarly, if RF=4, every server has a copy of all records in the cluster and 
now reconfiguration of only one server’s type to R4 improves the 
performance for reads by 21X
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A workload predictor is trained with historical traces from the application 
under tuning. It provides Hestia with the future pattern of the workload, which 

is essential to apply reconfigurations in a timely manner

Also in the offline phase, a single server performance predictor is trained 
to map workload description, VM specs and app configurations to Ops/s

A cluster-level performance predictor (trained offline) is used to estimate the 
throughput of the whole cluster.  In the online phase, our optimizer uses this 

predictor to evaluate the fitness of different cloud/application configurations and 
provides the best performance within budgeted cost 

Online

Offline

Predicted workload 
patterns and shifts Cost Model


